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Al~traet--The rise of a large gas bubble or slug through a closed vertiai tube of radius R and diameter 
D containing liquid has been calculated by potential flow theory. The effects of interfaciai surface tension 
are explicitly accounted for by application of the Kelvin-Laplace equation and solving for the bubble 
shape. The solution is ¢xpr~ed in terms of the Stokes stream function which consists of an infinite series 
of Bessel functions. The resultant equations have been solved for the first six terms in the series. For 
negligible su._fffface tension and negligible liquid viscocity, the bubble slip velocity is given by 
U, = 0.352x/gD and the radius of curvature at the_a_nose Rc/R = 0.76. For air/water in a 2.54 cm dia tube, 
the inclusion of surface tension gives U, ffi 0.346x/gD, P,~/R = 0.71, which is consistent with experimental 
observation. The shape of the gas-liquid interface is hemispherical near the nose for large-diameter tubes, 
where surface tension is negligible. For small-diameter tubes, however, the surface deviates from 
hemispherical. It is also shown that for viscous liquids the potential flow solution may be applied with 
good results to a tube of effective radius R d = R - v6, wber¢ 6 is the laminar wall film thickness and v 
is a function of the liquid properties and tube size. 

I N T R O D U C T I O N  

The rise of  a large gas bubble, or slug, through a vertical duct containing liquid is of  practical 
importance in many disciplines such as nuclear engineering (rod bundles), chemical and mechanical 
engineering (heat exchangers) and petroleum engineering (gas-lift production). 

This problem has been treated theoretically using potential flow theory by several authors 
(Dumitrescu 1943; Davies & Taylor 1950; Collins 1967; Collins et al. 1978). Potential flow theory 
is valid as long as the liquid viscosity is negligibly small so that the boundary layer at the tube 
wall will be thin, at least near the bubble nose where the calculations of  the bubble shape and drag 
are critical. In small tubes, however, the curvature of  the bubble surface, and therefore the surface 
tension effects, become significant, In addition, a thin viscous boundary layer at the tube wall can 
represent a significant fraction of  the tube radius, thus decreasing the effective tube diameter. 

In this paper the potential flow equations are solved for irrotational inviscid flow of  the liquid 
past the bubble. The bubble shape is an integral part of  the solution (as it was in the earlier work 
cited), but the effect of  surface tension on the bubble curvature is accounted for explicitly in the 
boundary conditions at the gas-liquid interface. The surface tension effects are seen to be significant 
for Eotvos numbers (Eo = pgD2/tr) below approx. 70, which corresponds to a tube diameter of  
about 2.25 cm for air slugs in water. 

A viscous correction term is introduced also to account for the decrease in effective tube diameter 
due to the laminar boundary layer at the tube wall, thus extending the applicability of  the solution 
to liquids of  moderate viscosity. 

Finally, an easily applied approximation is presented which provicles excellent agreement with 
this analysis and with published experimental data for a wide range of  liquid properties and tube 
diameters. 

THE P O T E N T I A L  FLOW MODEL 

Figure l depicts the basic geometry of  the problem. The coordinate system is taken to be attached 
to the bubble nose, with the z-axis vertically upward, and steady flow of  the liquid is assumed 
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Figure 1. Coordinate system chosen for a gas slug rising in a closed vertical tube of  infinite length. 

downward over the bubble. A solution of the potential flow equations is sought in terms of the 
Stokes stream function ~u, subject to the following boundary conditions: 

(i) the top of the tube is assumed closed so that, referred to the bubble frame, 

lim u(r,z)=-Us, 

where U, is the rise velocity of the bubble; 
(ii) v (R, z ) =  0 at the solid tube wall; 

(iii) u(0, 0 )=  v (0, 0 )=  0, since the coordinate origin is a stagnation point; 
(iv) the gas-liquid interface (the shape of which is to be determined) is a stream 

surface, so that the normal component of liquid velocity vanishes and the 
tangential component will equal that of the gas inside the bubble; 

(v) the liquid and gas pressures at the interface are related by the Kelvin-Laplace 
surface tension equation. 

Boundary conditions (i)-(iv) would be sufficient to define the solution in the liquid if the bubble 
shape were known. Condition (v) is required to determine this shape. The interface conditions (iv) 
and (v) are developed in the next section. 
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THE I N T E R F A C E  EQUATION 

Since the interface is a stream surface one may write Bernoulli's equation on the liquid side as 

PL + ½PL V2t + PLg z = PLO [1] 

and on the gas side as 

Po + ½po + p gz = [2] 
where P is the pressure, p is the density, 
represent liquid and gas, respectively, and 
At a point on the interface the pressures 

V is the fluid velocity magnitude, subscripts L and G 
subscript 0 refers to the stagnation point at the orion.  
are related by the Kelvin-Laplace equation, 

1 1 ) ,  
PG = Pt  + a -~j + ~ [31 

where a is the interfacial surface tension, assumed constant, and Rt and R2 are orthogonal radii 
of curvature of  the surface at the point of interest. Combining [1]-[3] and equating gas and liquid 
velocities provides 

Tl(r, z) = u 2 + v 2 + 2gz + 22(K - Ko) = 0, [4] 

where 

)"----" (PL--P~) and K = -  + . 

The requirement that the normal component of velocity vanish at the interface can be written 

~l" VH = 0, 

where H(r, z) = Z(r)  - z = 0 defines the surface and 17 t is the liquid velocity vector at the interface. 
Thus, one can define 

dz 
T2(r, z) = v ~rr - u = 0 [5] 

on the interface z = Z(r).  
Equations [4] and [5] thus express boundary conditions (iv) and (v), the only remaining 

requirement being to relate K in [4] to the interface shape function Z(r).  This relation is Oven as 

rZ" + [1 + (Z')r]Z ' 
K(r) = r[l  + (Z')2]½ ' [6] 

and is derived in Nickens (1986). 

THE STREAM FUNCTION 

A Stokes stream function ~f for steady laminar flow around a slug in a closed vertical pipe of 
radius R is well-known and is Oven by Collins et al. (1978) as 

~P (r, z) = [½r~ - r ~ d . J , (~ . r ) exp ( -6 . z ) l  [7] 

where Us is the bubble slip velocity, d. and 6. are constants and J, is the first-order Bessel function. 
Collins considered only the n = 1 term in the series. Surface tension and viscous effects were also 
neglected. Here we shall show the results of  taking additional terms into account, as well as the 
effects of surface tension on the interfacial shape. 

Making the convenient definition 

Buff ~ dnt~Ji(6~r)exp(-~,z),  
, g l  
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[7] becomes 

~P (r, z) = (½r2 - rBio)Us. 

The radial and axial velocity components are then given, respectively, by 

v(r , z )= V , = - - -  

and 

j 

u(r , z )= V~= r Or = Us +-~r 1 . 

It may be shown from the properties of Bessel functions that 

and 

so that [9a,b] become 

and 

(,) 
Or =B'-":+l-- r B° 

OB,j 
= 

V (r, z)  = Bll Us 

u(r, z) = (B01 - 1)Us. 

Boundary conditions (ii) and (iii) now require that 

~ d.~nJl(~.R)exp(-~.z) = 0 
nffil 

and 

For [1 la] to be satisfied for all z requires that 

and thus 

[8] 

[9a] 

[9b] 

[lOa] 

[10b] 

[1 la] 

d~t~, = 1. [1 lb] 

JI(~.R) = 0 

~n kn 
R'  

where k, is the n th zero of Jl. 
Since ~ consists of an infinite series, the solution is approximated by truncating the series after 

some N terms, herein referred to as the Nth-order approximation. Such an approximation requires 
the determination of N constants dn and the unknown slip speed U,. The (N + l) simultaneous 
equations are provided by [1 lb] and the interface equations [4] and [5], as described in the following 
section. 

THE SOLUTION OF THE INVISCID EQUATIONS 

The functions TI and T~ as defined by [4] and [5] are identically zero everywh~¢ on the gas-liquid 
interface; it therefore follows that their total derivatives of any ord~ arc also zero on the interface. 
The total derivative of a function T(r, z) on the interface is dellr~ as 

DT aT aT0z aT ,aT 
D r -  Or + Oz Orffi'~r + Z ~z" 
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Thus, the derivatives of u and v are determined from [10a,b] those of Z from [5] and those of K 
from [6]. These are substituted into the derivatives of T~, using [4], which are evaluated at the 
stagnation point. Since the number of these equations required increases with the order of the 
approximation, the analysis becomes very complicated for higher order solutions. The calculations 
have been performed for orders up to N = 6 and the details are presented in Nickens 0986). Only 
the second-derivative equations will be presented here as an example. 

Defining 

d ' Z  O(m+")~ 
Z . f ~ r  ~ and $=.= Or mOTh, 

where ~b is any function dp(r,z), it may be shown that 
+ n) m (u.,.)o = ½(-- 1) (~ C. (S0,=+.+l)o [12a] 

and 

where 

(V=)o = ½(- l) ~ + " ) c L ,  (Bo.. +.+ ,)o. [12b] 

b! 
Cb.= a!(b -- a)!" 

Noting that the axial symmetry of the bubble requires that all odd derivatives of Z(r) vanish 
at r = 0, we can also show that the second total derivative along the interface of any function 
T(r, z) is given by 

(D'~r2~ =(T2°+T°'Z2)°'o 

Thus, using T2, from [5], in the above we find that 

and, from [6], 

Finally, from [4], 

U20 
k 4B02 ]0" 

(Kgo 3 , = -- (4Z 2 -- ~ Z4)o. 

[131 
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Figure 2. Calculated Fr vs Eo for air/water (N = 1). 
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9O IO0 

where use has been made of the relation 

In the analysis the shape of the bubble is expanded in a Taylor series about the origin (bubble nose). 
If the series approximation for the bubble shape Z(r) is also tnm~ted after just one term, [13] 
then becomes 

(.U~B02 gBO34Bo____ 2 lbl:;~2 ~ 
+ " " o  --  0. 

Defining the Eotvos number, 

4gR2 4gR~(pL - -  P ~ )  
E o = - -  = 

2 a 

and solving for the slip speed gives 

0. 01, (1 - E o } _ l  = - - - ~ - o  } [141 

It can be s~n immediately that [14] predicts a Froude nm'nber, 

Fr = Us/x/2gR, 
which approaches a constant value of 0.361 for large Eotvos numbers (negligible surface tension). 
This is in agreement with the Collins et aL (1978) one-term solution which neglects surface tension. 
The equation also predicts the correct trend for lower values of Eo, as observed experimentally 
(Wallis 1962; White & Beardmore 1962; Harmathy 1960). Figure 2 shows [14] compared with the 
experimental correlation 

F r=  0.34511- ¢xp(3"37 O E ° ) l ,  [15] 

given by Wallis (1962), which is known to agree well with experimental observation of a variety 
of gas/liquid systems, provided the viscous effect is negligible. Although the trend is correct, the 
agreement is not especially good. (It should be noted here that [15] is a reasonable correlation for 
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actual data which exhibit normal experimental scatter. It would be unrealistic to expect exact 
agreement of theory to this curve.) 

It is not necessary to truncate the Taylor series after one term. If the Z4 term is computed from 
[5] and used in [13] the result (after some algebra) is given by 

( U,=0.361 2 ~  1 + - - ~ - ] ,  [16] 

which has the same asymptote for large Eo but exhibits the wrong trend at lower values. Additional 
terms in the series have no effect on the equations for N = 1. In fact, for general N, only N + 1 
terms of the Taylor series appear in the equations. Since all odd terms are identically zero, by 
symmetry, the order ND of the shape series is at most 2(N + 1). 

As stated in the next section, it was found that inclusion of more than N + 2 terms in the Taylor 
series caused deterioration in the quality of the results, indicating that the truncation of the shape 
series should be kept consistent with that of the Bessel function series. 

HIGHER ORDER APPROXIMATIONS 

For N > 1 no analytic solutions are readily available, and a multidimensional Newton-Raphson 
technique, described in Nickens (1986), was used to solve the equations numerically. The case 
N = 2 is of some interest as it can be proved that, for Eo = oo, only one real solution exists. That 
solution was determined to be, for a tube of radius 1.27 cm, 

dm= 0.1717, d2 = -0.0225, U, = 14.45 cm/s, Fr = 0.29; 

which is not consistent with either experimental observation or the numerical solutions for 
larger N. 

For N = 3, Nv = 4, a solution was obtained which agrees well with the empirical correlation 
equation, as shown in figure 3. With Nv increased to 6, the numerical solution agrees even better 
in the asymptote as Eo -,  oo, but exhibits the wrong behavior for low Eotvos numbers (high surface 
tension). 

As N is increased further this trend continues. At large Eotvos numbers (Eo > 70) the bubble 
velocity converges very well to the experimental values as ND is increased to 2(N + 1) (figure 4). 
At low Eotvos numbers, however, the solutions given by Nv = N + 1 (for odd N) or N D = N + 2 
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Figure 3. Calculated F r  vs Eo for a i r /water  (N  = 3, N D = 4). 
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Figure 4. Calculated Fr for air/water showing convergence as additional terms are included in the series 
expansion. 

(for even N) produce the best agreement. In fact, these solutions are almost indistinguishable from 
the N = 3, ND = 4 solution. 

BUBBLE-SHAPE CALCULATION 

The bubble shape near the nose is readily calculated from [8] by requiring ~ = 0 at the gas-liquid 
interface. 

For an air/water system in a tube of radius R - 1.27 cm (Eo = 88), the radius of curvature R~ 
at the nose rapidly converges to a value of 0.71R as N and ND are increased. For negligible surface 
tension, the solutions converge to Rc/R = 0.76. 
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Figure 5. Calculated bubble shape compared to "spherical cap" for air/water in a 2 .54cm dia tube, 
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Figure 6. E f f e c t s  of  surface tension on bubble shape for air/water ( N  = 3, ND ---- 4). 

Figure 5 compares the calculated bubble shape for air/water in a tube of  radius 1.27 cm with 
a spherical cap of  radius 0.71R for various values of  N (ND = 2N). It is clear that the bubble shape 
approaches the spherical cap as N is increased. This supports the assumption of  previous authors 
that the interface assumes a spherical shape near the nose. In fact, it can be proven (Nickens, 1986) 
that, for negligible surface tension, the bubble shape must, out of necessity, be hemispherical near 
the nose. As surface tension effects become more significant (Eo < 40) the shape of  the interface 
deviates from hemispherical as surface tension forces begin to dominate. 

Figures 6 and 7 illustrate the effects of  surface tension on the N = 3, ND = 4 and N -- 5, ND = 6 
solutions. Although the lack of  convergence of  the bubble shape at these values of  N produces some 
oddities far from the nose, the important feature is the increased bluntness of  the bubble near the 
nose. This blunting of  the nose results in a decrease of the rise velocity and is a direct result of  
the surface tension. 
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C O R R E C T I O N  F O R  S M A L L  L I Q U I D  V I S C O S I T Y  

Although the liquid viscosity cannot be accounted for directly by potential flow theory, a simple 
approximation of the viscous effects for small viscosity is to estimate the reduction of the effective 
tube radius caused by the boundary layer at the tube wall. It is still assumed that the boundary' 
layer at the gas-liquid interface is negligible in comparison to that at the tube wall. 

Potential theory requires that the bubble surface approach the tube wall asymptotically as z 
becomes negative infinite. However, the actual bubble is confined within the radius R - 6, where 
6 is the thickness of the fully developed laminar liquid film. The boundary-layer thickness must 
increase from zero at large positive z to t5 at large negative z. Potential theory applies only in the 
liquid region between the boundary layer and the bubble. 

The above potential flow theory may be applied to predict the rise velocity in a viscous liquid 
by utilizing the effective tube radius 

l~er = R - v6, [17] 

where 0 ~< v ~< 1 and v depends on the liquid properties. 
Straightforward application of mass and momentum balance to the fully developed laminar 

liquid film (at large negative z) yields the relation 

2r/R 2 (Z 3 
= - -  [ 1 8 ]  Us 3 l - e  

between the bubble slip speed and the film thickness. Here E = 6 / R  is the nondimensional film 
thickness and r /=  o g / #  is a measure of the liquid properties. Equation [18] provides an additional 
constraint on the above solution and imposes the additional unknown E. It is derived in detail in 
Nickens (1984) and is also given by Brown (1965). 

There remains, of course, the parameter v to be determined. Physically one would expect an ideal 
liquid to have v = 0 (no boundary layer) and that v should, in general, increase with viscosity. The 
resulting theory is shown to apply for viscosities up to a maximum at which v = 1. Beyond this 
the boundary layer is apparently thicker than the fully developed film and a truly viscous analysis 
is required (i.e. the potential theory fails). 

A P R A C T I C A L  M E T H O D  

The above N = 3, ND = 4 solution has been shown to provide very good agreement with observed 
data. Assuming that the general shape of the solution curve for Eo < 100 is correct, this agreement 
can be enhanced slightly by adjusting the asymptote to that predicted by the N = 6, Nt, = 12 
solution for large Eo and negligible liquid viscosity. The predicted value of Fr = 0.352 under these 
conditions is nearly identical to that of Dumitrescu (1949). 

A good approximation to the resulting curve is then given by 

Fr = 0.352(1 3.18 14.77'~ [19] 
Eo 7 

for negligible viscosity. To include the effect of viscosity, as in the preceding section, [19] may be 
modified to 

( 3.18 14.77 "~ 
Fr=0.352R~ l R~Eo R~Eo2J ' [20] 

where RN = Rar/R is the normalized effective tube radius. 
Here it is assumed that v is an exponential function of the nondimensional liquid property 

n u m b e r ,  

{o gR3   
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Table I. Details o f  the fluids used by White & Beardmore (1962) 

Temperature p ~ 
Fluid (°C) (g/ml) (cP) (dyn/cm) 

Distilled water 26 0.997 0.87 71.5 
40% Sucrose solution 26 1.172 5.65 77.7 
58% Sucrose solution 25 1.272 40.50 76.0 
Ethylene glycol 26 I. 113 19.9 47.5 
Aqueous ethanol 26 0.803 1.385 22.8 
Tellus oil 25 0.864 52 31.0 
Valuta oil 25 0.902 294 30.8 
Glycerol 24 1.260 712 63. I 
90% Glycerol solution 24 1,234 154 64.8 
95% Glycerol solution 25 1.246 323 63,9 
Sugar syrup 27 1.42 20,900 77.2 
Diluted sugar syrup 27 1.40 2650 77.0 
Rediluted sugar syrup 26 1.39 1610 76.9 

67 

A fit of  [20] to the data of table 1 and figure 7 of  Tellus oil at Eo = 30 and Eo = 100 yields the 
expression 

v = 6.40N; °'6°. [21] 

The minimum Np for which [20] should be valid is then Np = 22 (i.e. v = I). 
Applying this analysis to several of the liquids of table I produces the results in figure 8, which 

compare favorably with the experimental data of White & Beardmore (1962), reproduced in figure 
9, for Eotvos numbers as low as 8 for the low-viscosity liquids. As intuitively expected, the Eotvos 
number below which good agreement is obtained increases with viscosity. The filled circles in figure 
6 denote the value of Eo at which Np = 22 for each liquid, if this value exceeds the minimum Eo 
at which Fr = 0. It can be seen that agreement is very good for Eo above the filled circles but begins 
to deteriorate at lower values of Eo. 

Values of RN have been calculated for a variety of liquid properties and the results presented 
in figure 10 as a function of Eo. If the liquid properties and tube radius are given, figure 8 and 
[20] may be easily utilized to predict the bubble velocity. 

For example, consider a solution of 58% sucrose in water, with properties as given in table I, 
in a tube of dia 1.27cm. Thus Np = 50, Eo = 26.5 and RN, obtained from figure 10, is 0.875. 
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Figure 8. Calculated Fr vs Eo for viscous liquids using effective diameter. 
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Figure 9. Measured Fr vs Eo for viscous liquids (White & Beardmore 1962). 

Equation [20] then yields Fr = 0.265 and the bubble slip velocity Us = 9.35 cm/s. This value 
compares well with the experimental data of figure 9. 

Figure 11 graphically summarizes the results of the viscous approximation theory. This figure 
may also be used in place of figure 8 and [20], although it is more difficult to interpolate at low 
values of Np. A computer program is also provided in Nickens (1986) that solves the equations 
for Rs and predicts the Froude number and velocity directly. 

CONCLUSIONS 

The potential flow analysis of large bubbles in liquid-filled tubes has been extended to account 
for surface tension effects at the liquid-gas interface, thus allowing its application to small-diameter 
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Figure I0. Normalized effective radius as function of Eo and the liquid property number Np. 
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Figure 11. Calculated Fr  vs Eo as function of  the liquid property number Nv. 

tubes where the bubble curvature is large and surface tension forces begin to dominate inertial 
forces. This required the inclusion of more terms in the series expansion for the velocity potential 
than previously published works have provided, as well as an explicit calculation of the bubble 
shape. 

In addition, the effect of moderate liquid viscosity may be approximated by replacing the actual 
tube diameter with an effective diameter which accounts for the thin boundary layer at the tube 
wall. This approximation has been shown to agree well with published experimental data for a 
considerable range of tube sizes and liquid properties. 
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